REFURBISHMENT
CONCRETE REPAIR AND PROTECTION OF CHIMNEYS AND COOLING TOWERS
SIKA – YOUR PARTNER

Since more than three decades Sika has been a reliable partner with cooling tower contractors supplying products and systems on all continents. Sika has shown the Power Industry we are a partner they can trust. The products and systems used in new cooling towers and retrofitted structures are thoroughly tested in Sika laboratories before being independently checked. Sika materials are further proven by independent body to withstand the harsh weather conditions in the real environment.
SIKA’S LIFE CYCLE ASSESSMENT APPROACH

Life Cycle Assessment (LCA) is a standardized method to assess and compare the inputs, outputs and potential environmental impacts of products and services over their life cycle. LCAs are increasingly recognized as the best way to evaluate the sustainability of products and systems.

Sika carries out LCAs according to the ISO 14040 series and the Standard EN 15804. The impact assessment methodology used is CML 2001. The data for the Sika LCA is based on public databases, such as those from ecoinvent, the European Reference Life Cycle Database (ELCD) and PE-GaBi, plus the specific data from Sika production plants and products.

Sika evaluates all impact categories and resource indicators deemed as important according to the relevant standards.

Cumulative Energy Demand (CED), Global Warming Potential (GWP) and Photochemical Ozone Creation Potential (POCP) are considered to be most relevant for concrete repair and protection.

Cumulative Energy Demand (CED) is the total amount of primary energy from renewable and non-renewable resources.

Global Warming Potential (GWP) is the potential contribution to climate change due to greenhouse gases emissions.

Photochemical Ozone Creation Potential (POCP) is the potential contribution to summer smog, related to ozone induced by sunlight on volatile organic compounds (VOC) and nitrous oxides (NOx).

SIKA’S SUSTAINABLE REFURBISHMENT OF COOLING TOWERS

Sika LCAs on refurbishment strategies for cooling towers are based on a ‘Cradle to Grave’ approach. Potential environmental impact of products for concrete repair and protection are investigated from raw material extraction, production, application and use to final disposal at end of life. Construction and end-of-life scenario of the reinforced concrete structure itself are excluded.

<table>
<thead>
<tr>
<th>Natural Draft Cooling Tower Refurbishment Scenarios 20'000 m²</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial construction</td>
<td>No protection</td>
<td>No protection</td>
<td>Full protection with proven coating and adequate surface preparation</td>
</tr>
<tr>
<td>After 20 years</td>
<td>Full refurbishment</td>
<td>Full refurbishment</td>
<td>Refreshing coat only</td>
</tr>
<tr>
<td>Adequate surface preparation</td>
<td>Inadequate surface preparation</td>
<td>proper surface preparation</td>
<td></td>
</tr>
<tr>
<td>Highly solvented coatings</td>
<td>Highly solvented coatings</td>
<td>proven protective coatings</td>
<td></td>
</tr>
<tr>
<td>Every 10 years</td>
<td>Full refurbishment as after 20 years</td>
<td>No requirement</td>
<td>Refreshing coat only</td>
</tr>
<tr>
<td>Every 20 years</td>
<td>Refreshing coat only</td>
<td>No requirement</td>
<td>Refreshing coat only</td>
</tr>
</tbody>
</table>

Sika’s Life Cycle Assessment

Life Cycle Assessment (LCA) is a standardized method to assess and compare the inputs, outputs and potential environmental impacts of products and services over their life cycle. LCAs are increasingly recognized as the best way to evaluate the sustainability of products and systems.

Sika carries out LCAs according to the ISO 14040 series and the Standard EN 15804. The impact assessment methodology used is CML 2001. The data for the Sika LCA is based on public databases, such as those from ecoinvent, the European Reference Life Cycle Database (ELCD) and PE-GaBi, plus the specific data from Sika production plants and products.

Sika evaluates all impact categories and resource indicators deemed as important according to the relevant standards.

Cumulative Energy Demand (CED), Global Warming Potential (GWP) and Photochemical Ozone Creation Potential (POCP) are considered to be most relevant for concrete repair and protection.

Cumulative Energy Demand (CED) is the total amount of primary energy from renewable and non-renewable resources.

Global Warming Potential (GWP) is the potential contribution to climate change due to greenhouse gases emissions.

Photochemical Ozone Creation Potential (POCP) is the potential contribution to summer smog, related to ozone induced by sunlight on volatile organic compounds (VOC) and nitrous oxides (NOx).
Sustainable Refurbishment of Cooling Towers

Sika’s well-proven and durable protective system (scenarios 2 & 3) allows a reduction in the frequency of refurbishment while having a significant reduction on the three impact categories and a lower material input. Advantages of scenario 3 over scenario 2 is the better flexibility for correct application of the protection system at the time when the tower is erected.

Scenario 1: Polymer modified cement protective coating system
- 20 years protection
- Full refurbishment every 10 years
- No Protection

Scenario 2: Refurbishing with durable system
- 20 years protection
- Full refurbishment every 20 years
- No Protection

Scenario 3: Durability oriented system
- 20 years protection
- Refreshing coat every 20 years
- Full Protection

The higher impact of scenario 1 is due to the use of heavily solvent containing coating system. The difference between scenario 1 and the other two is around 20'000 liters of Ethylene equivalent over the life cycle period of 60 years.

This is equivalent to a saving of more than one drum of pure solvent a year.

Overall savings for the plant owner with positive incidence on sustainability:
- The appropriate strategy can have a beneficial impact:
 - by reducing the frequency of refurbishment cycles
 - by improving the resource efficiency and the environmental performance of the refurbishment process
 - by providing a more sustainable solution

The greater resource efficiency of scenario 2 and 3 allows saving of 600 tons of CO₂ over the life cycle of 60 years. This is equivalent to a saving of 77,000 km a year (compared to the limit of the European Union of not more than 130 g of CO₂ per km targeted for 2015).

Conclusion

The Photochemical Ozone Creation Potential (POCP), Cumulative Energy Demand (CED), and Global Warming Potential (GWP) values are shown in the graphs below.
CHIMNEYS AND THEIR EXPOSURE

Traditionally, concrete chimneys were not provided with any additional surface protection.

For many years site assembled precast concrete sections or continuous slip-forming concrete on site were used in chimney construction. However, even with strict quality control it is always likely that there will be some site difficulties, e.g. during the concrete placement, finishing or assembly, some elements will move out of place and form voids, suffer grout loss, reduce cover thickness or be physically damaged.

The use of high-strength concrete with its relatively low slump-flow or flowability also means that it can be difficult to compact. By nature and shape of the structure, the freshly placed concrete in these structures on site is always difficult to cure correctly.

Chimneys are very exposed to aggressive influences on their external surfaces due to the exposed locations where these structures are built, their height above nearby structures and of course their function. The internal surfaces are normally fully lined or channelled and therefore protected.

The aggressive external influences include:
- Atmospheric carbonation
- Frequent wetting and drying
- Freeze-thaw cycles (the result of increased wind chill)
- High thermal variations and thermal gradients in sunlight
- Chlorides from marine atmospheres (even miles inland due to prevailing winds)
- Exhaust gases and condensates
- Influencing of neighboring chimneys

The potential for concrete damage from these exhaust gases containing varying levels of acidic sulphurous (SOx), nitrous (NOx) and other aggressive materials is probably the greatest overall threat, even when modern flue gas desulfurization equipment is fitted.

The exposed external surfaces of chimneys are normally subdivided into zones, according to their level of exposure to these gases and other potentially damaging influences.

REINFORCED CONCRETE CHIMNEYS are high-rise and slender specialized structures. They are normally built by specialists to high standards of engineering with strict quality control of the concrete.
“COOLING TOWERS” are exactly as their name suggests, structures for water re-cooling, although they do not necessarily have to be large physical “natural draught” towers. The name is also used for smaller cellular coolers or hybrids, which combine a smaller natural draught structure with a mechanically ventilated system of cooling the flow to retain the condensates.

Large reinforced concrete, natural draught cooling tower structures can be as tall or even taller than many chimneys. However, due to their design and function, they have a very much larger surface area with a much lower mass to surface area ratio.

Unlike chimneys, both the internal and external concrete surfaces of cooling towers are exposed to aggressive influences. The external exposure and the potential damage are therefore similar but the internal surfaces are usually in much greater danger.

THE EXTERNAL EXPOSURE

The external surfaces are exposed to very similar aggressive influences like chimneys. However, due to their much larger circumference and diameter with a much lower mass to surface area, they are at much greater risk of cracking. This is due to settlement and adverse thermal gradients developing from thermal variations imposed on the surfaces.

THE INTERNAL EXPOSURE

The internal surfaces of cooling towers are also very large and exposed. Even though they are constructed with acid-resistant concrete, it has been recognized that they must be given additional surface protection. This is due to their direct exposure and contact with the exhaust gases and condensates, which are often aggressive and acidic at a pH as low as 2.5.

Sika has been the preferred partner with the pioneering specialist engineers, contractors and access equipment manufacturers, producing tailored products and systems for these very specific applications.

The level and degree of exposure and potential damage to the different areas of the internal surface are firstly dependent on the internal level, location and direction of the flue gas discharge points.

Secondly, it is dependent on whether the cooling tower is fitted or has been retrofitted with a modern flue gas desulfurization equipment, to greatly reduce and in some cases almost eliminate the aggressive and acidic contents of the exhaust.

Additionally by design, natural draught cooling towers always have a relatively large opening at the top and therefore at least some of the internal surfaces are exposed to direct solar radiation.

This includes UV light which is very aggressive to most types of epoxy resin coatings, such as those that are normally used as chemically resistant coatings. Special products are therefore required to be able to withstand this combined exposure inside cooling towers.

The total “loading” on the internal surfaces is also variable according to the daily position of the sun and the direction of the plume (reducing solar radiation but increasing exhaust gas attack on the contact areas). Obviously this effect gradually reduces vertically down the inside of the tower. However, at the top it also increases the potential for thermal variations and potentially damaging adverse temperature gradients that can lead to cracks within the concrete walls.

Internal exposure of induced draught cooling towers is less aggressive but the temperature is often raised to around 50°C that bring additional stress to the concrete.

EXPOSURE CLASSIFICATION

In terms of their exposure, the external surfaces of cooling towers can therefore also be divided into the same three zones as chimneys:

ZONE

1. The top of the shaft and around the annulus from the top down approximately 5 m irrespective of the structure’s diameter.

2. The central area which is from 5 to 30 – 50 m down, dependent on the diameter of the structure.

3. The rest of the height to the ground which is usually equivalent to around 70% of the total surface area.

EXPOSURE CLASSIFICATION

1. Severe combined exposure of multiple adjacent cooling towers and chimneys at power stations and industrial complexes.

2. Specialist equipment and materials are required for all of the internal works in these structures.

3. Severe internal exposure to aggressive gases and their sun aggravated direct UV light exposure and thermal variations at the top.
KEY STAGES IN THE CONCRETE REFURBISHMENT PROCESS

THE SUCCESSFUL REPAIR, PROTECTION AND CORROSION MANAGEMENT of reinforced concrete chimneys and cooling towers always requires an initial professional assessment and an appropriate detailed condition survey.

Some access and even some refurbishment works can take place while these structures are in service. But inspection and assessment work of external zone 1 and most of the internal surfaces of cooling towers, which are integral part of the power production, can normally only be done during switch-off, boiler servicing or upgrading works.

The costs of any extended closure or downtime are extremely high, due to the complex national grid infrastructures, power transmission changes and the other works required. This will always lead to great time pressure, to complete the project on time. However, it is essential that a full professional assessment is carried out prior to repair and protection works.

To do otherwise is short-term and a false economy, as serious structural damage could follow, possibly putting the structure completely out of commission for a long period and endangering people and other structures in the vicinity.

The second stage is the design, execution and supervision with technically correct repair “principles” and “methods”, using products and systems which for optimum results and long term cost effectiveness, should be selected according to the new European Standard EN 1504-9.

KEY STAGES IN THE CORRECT REPAIR AND REFURBISHMENT PROCESS:

1. ASSESSMENT OF THE STRUCTURE
A condition survey by qualified and experienced people to include the condition of the structure and its surfaces, including visible, non-visible and potential defects.

2. IDENTIFICATION AND DEGREE OF THE CAUSE(S) OF DAMAGE
A review of the original construction details and any previous refurbishment works, plus analysis and diagnosis from the condition survey to identify:
- Damage due to concrete defects or attack (mechanical, chemical or physical types)
- Damage due to reinforcement corrosion (carbonation or chloride attack)

3. DETERMINATION OF REPAIR AND PROTECTION OBJECTIVES AND OPTIONS
Owners and engineers always have a number of options for deciding the appropriate refurbishment strategy to meet the future requirements of the structure. With chimneys and cooling towers, the most limiting factors are usually the difficulties for future access, plus the likelihood and consequences of any failing concrete or structural failure.

4. SELECTION OF APPROPRIATE REPAIR PRINCIPLES AND METHODS
In accordance with EN 1504-9 the appropriate “repair principles” should be selected and then the best “method” of achieving each principle can be defined.

Following this selection, the performance requirements of suitable products are defined, using European Standards EN 1504 Parts 2 to 7 in conjunction with Part 10, which also provides guidelines for the work preparation and site application including quality control. On these substantial structures with their very specific exposure and damage potential, the materials selected must also be tested and proven in these very specific conditions.

5. FUTURE MAINTENANCE
As with all refurbishment projects, the need and likely time schedule for future inspection and maintenance should be defined. Complete and fully detailed records of the works undertaken must always be maintained.

SIKA PRINCIPLES IN ACCORDANCE WITH EUROPEAN STANDARD EN 1504

SIKA IS THE GLOBAL MARKET AND TECHNOLOGY LEADER in research, development and production of concrete repair systems for all types of buildings and civil engineering structures.

Sika is the preferred partner of specialist engineers, contractors and access equipment suppliers focused on these important structures.

All products and systems for concrete repair and protection needed for this demanding application are produced by Sika fully in accordance with the European Standard EN 1504. This includes products for application in all of the different exposure and climatic conditions that can be required to repair and protect chimneys and cooling towers all over the world.

Sika is the preferred partner of specialist engineers, contractors and access equipment suppliers focused on these important structures.

All products and systems for concrete repair and protection needed for this demanding application are produced by Sika fully in accordance with the European Standard EN 1504. This includes products for application in all of the different exposure and climatic conditions that can be required to repair and protect chimneys and cooling towers all over the world.

Sika provides a complete package of documentation to assist chimney and cooling tower owners, engineers and contractors with the right selection of repair principles, methods and products, production of specifications and tender documents.

The experienced Sika Technical Services Department is also available to train site engineers and contractors in the use and application of the products and systems.

Sika provides extensive independent testing with all relevant approvals and certificates for all materials. This provides maximum confidence for everyone involved in these challenging projects. An equally extensive portfolio of successfully completed reference projects around the world.

Sika systems are available to meet all individual requirements of chimney and cooling tower structures. Whatever damage has occurred, whatever future exposure requirements and wherever in the world the projects are located.

Chimneys and cooling towers in close proximity require technically correct repair in accordance with EN 1504. Creative possibilities in conjunction with using technically correct repair and protection are also possible with the advanced Sika systems.
ASSESSMENT OF TYPICAL CAUSES AND EFFECTS OF DAMAGE

DAMAGE DUE TO CONCRETE DEFECTS OR ATTACK

CHEMICAL
- Aggressive exhaust gases
- Condensation leaching

PHYSICAL
- Thermal movement cracking
- Adverse thermal gradient cracking
- Freeze/thaw action
- Shrinkage (from hydration)
- Erosion

DAMAGE DUE TO STEEL REINFORCEMENT CORROSION

CARBONATION
Atmospheric carbon dioxide ingress (loss of alkaline protection).

\[
\text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O}
\]

Carbon dioxide from the atmosphere penetrates progressively into the concrete and reacts with the calcium hydroxide in the pore liquid. This eventually reduces the protective alkalinity around the steel, allowing corrosion to start in presence of water. This phenomenon is often associated with low concrete cover.

CHLORIDES AND ACID GASES
In these structures corrosion of the reinforcement can also occur due to attack from chlorides in marine atmosphere. However, the steel is far more frequently attacked directly by the acidic exhaust gases in conjunction with carbonation of the surrounding concrete. This means that the steel corrosion is accelerated and spalling, plus erosion increases.

ASSESSMENT OF TYPICAL CAUSES AND EFFECTS OF DAMAGE

DAMAGE DUE TO CONCRETE DEFECTS OR ATTACK

CHEMICAL
- Aggressive exhaust gases
- Condensation leaching

PHYSICAL
- Thermal movement cracking
- Adverse thermal gradient cracking
- Freeze/thaw action
- Shrinkage (from hydration)
- Erosion

DAMAGE DUE TO STEEL REINFORCEMENT CORROSION

CARBONATION
Atmospheric carbon dioxide ingress (loss of alkaline protection).

\[
\text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O}
\]

Carbon dioxide from the atmosphere penetrates progressively into the concrete and reacts with the calcium hydroxide in the pore liquid. This eventually reduces the protective alkalinity around the steel, allowing corrosion to start in presence of water. This phenomenon is often associated with low concrete cover.

CHLORIDES AND ACID GASES
In these structures corrosion of the reinforcement can also occur due to attack from chlorides in marine atmosphere. However, the steel is far more frequently attacked directly by the acidic exhaust gases in conjunction with carbonation of the surrounding concrete. This means that the steel corrosion is accelerated and spalling, plus erosion increases.

ASSESSMENT OF TYPICAL CAUSES AND EFFECTS OF DAMAGE

DAMAGE DUE TO CONCRETE DEFECTS OR ATTACK

CHEMICAL
- Aggressive exhaust gases
- Condensation leaching

PHYSICAL
- Thermal movement cracking
- Adverse thermal gradient cracking
- Freeze/thaw action
- Shrinkage (from hydration)
- Erosion

DAMAGE DUE TO STEEL REINFORCEMENT CORROSION

CARBONATION
Atmospheric carbon dioxide ingress (loss of alkaline protection).

\[
\text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O}
\]

Carbon dioxide from the atmosphere penetrates progressively into the concrete and reacts with the calcium hydroxide in the pore liquid. This eventually reduces the protective alkalinity around the steel, allowing corrosion to start in presence of water. This phenomenon is often associated with low concrete cover.

CHLORIDES AND ACID GASES
In these structures corrosion of the reinforcement can also occur due to attack from chlorides in marine atmosphere. However, the steel is far more frequently attacked directly by the acidic exhaust gases in conjunction with carbonation of the surrounding concrete. This means that the steel corrosion is accelerated and spalling, plus erosion increases.
CONCRETE REPAIR AND PROTECTION
REMOVAL OF DAMAGED CONCRETE

THE FIRST STAGE OF THE WORK ON SITE is to remove the damaged concrete and then to clean any exposed steel reinforcement.

Any exposed steel reinforcement should be cleaned to remove rust and corrosion products. EN 1504 Part 10 recommends the steel be prepared to Sa 2 1/2 (if active coating is applied) or to Sa 2 (if active coating is applied). These denominations are originally from a Swedish Standard but now adapted into an international standard ISO 8501-1. Any method of steel surface preparation may be used, with grit blasting normally recommended as the best and the fastest, particularly with the larger areas of steel that can be exposed on cooling towers.

This cleaning and preparatory work should all be carried out in accordance with the site works and application guidelines of EN 1504 Part 10 Section 7, which can also be referred to for additional information.

In most situations it is best to first carry out a program of surface cleaning works, usually working from top-down. That surface preparation will remove any lose or severely damaged concrete. This action may expose additional area of damage that will subsequently require treatment.

As a general rule concrete removal should be kept to a minimum, particularly any sound concrete. However, where actively corroding steel reinforcement is present, it must be fully exposed to beyond its corroding length and around its full circumference. To allow cleaning and preparation, a distance equivalent to the bar diameter and a minimum of 12.5 mm is normally required.

For this work on these relatively thin structures, it is particularly important to use only new, sharp chisels or precision-controlled hydro-demolition equipment to prevent any non-scheduled puncturing or cutting through of the walls. The breaking out must be kept fully under strict control and continuous monitoring by the responsible engineer.

In marine environments where the concrete has previously been exposed and contaminated by chlorides (even when they are at some distance from the sea due to a combination of the structure’s height and prevailing winds), the concrete and the steel surfaces should be washed with clean water to remove the chloride deposits. The cleaned and prepared concrete surface should be free from dust and any other contaminants.

In marine environments where the concrete has previously been exposed and contaminated by chlorides (even when they are at some distance from the sea due to a combination of the structure’s height and prevailing winds), the concrete and the steel surfaces should be washed with clean water to remove the chloride deposits. The cleaned and prepared concrete surface should be free from dust and any other contaminants.
REPLACING AND RESTORING DAMAGED CONCRETE

SIKA PRODUCES A COMPLETE RANGE of repair concretes and mortars, which are specifically designed for restoring or replacing the original profile and function of the damaged concrete. These include cement-bound, polymer modified cement-based and polymer epoxy resin based products, according to the specific applications and performance requirements. All are in accordance with EN 1504-9 Principle 3 (CR) Concrete Restoration and compliant with EN 1504-3 Class R4.

APPLYING REPAIR MORTAR BY HAND

Sika provides an extensive range of pre-batched hand applied mortars and systems for localized patch repairs. This includes chemically resistant materials to protect against the aggressive influences of acidic gases and liquids.

Sika hand placed repair mortars include the following:
- Sika MonoTop® – pre-bagged, one-component, polymer and non-polymer modified, cement-based, hand applied mortars.
- SikaAdur® – pre-batch, epoxy resin based chemically resistant mortars.

RECASTING/POURING REPAIR MORTARS AND CONCRETES

Typical recasting repairs, which can also be described as “pourable” or “grouting” repairs, are employed when whole sections or larger areas of concrete replacement are required. For example: in the replacement of all, or substantial parts of tower or chimney sections.

This method is also very useful for the complex structural supporting sections, which can also present concreting or concrete replacement problems due to restricted access or congested reinforcement.

The most important criteria for the successful application of this type of products are their flowability and their ability to move around obstructions. Additionally, they often have to be poured in relatively thick sections without thermal shrinkage cracking. This is to ensure that they can fill the desired volume and area completely, despite the restricted access and application points. Finally, they must also harden to provide a suitable finished surface, which is tightly closed and not cracked.

Sika produces suitable recasting and pourable products and systems including:
- Sika MonoTop® – pre-bagged one-component, polymer and non-polymer modified cementitious pourable repair mortars.
- SikaCem® SCC – pre-bagged silicofume enhanced self-consolidating concrete (SCC).
- Sika® ViscoCrete® – admixture SCC technology for large volume pumped and high density concrete replacement.
- SikaRapid® – technology for high early strengths or continuous replacement concreting at low temperatures.

SPRAY APPLIED REPAIR CONCRETES AND MORTARS

Sika spray applied mortar systems are polymer and/or silicafume enhanced for increased durability. The SikaCem® and SikaCrete® ranges of “dry” sprayed mortars, with both polymer modified and cement-bound products with the capability of being sprayed over large distances and up to 180 m high with the correct equipment. The dry spray equipment can be provided by Sika Schweiz AG, Aliva Equipment.

SikaCrete® and Sika MonoTop® ranges of “wet” spray applied mortars also include both polymer modified and cement-bound products.

The fiber-reinforced Sika MonoTop®-412 NFG is particularly suitable for the high demands of localized repairs because of its high density and low permeability, plus its excellent strength correlation in service (compressive, tensile and e-modulus).

The SikaCrete® and Sika MonoTop® ranges of “wet” spray applied mortars also include both polymer modified and cement-bound products.

The fiber-reinforced Sika MonoTop®-412 NFG is particularly suitable for the high demands of localized repairs because of its high-build, low shrinkage, polymer modification and ease of use.

SPRAY APPLIED MATERIALS ARE PARTICULARLY USEFUL FOR LARGE VOLUME CONCRETE REPLACEMENT.
LEVELLING AND RESTORING THE CONCRETE SURFACE

CHEMICAL PROTECTION OF CONCRETE involves the application of coatings or treatment of the surface. It is a fundamental precondition for the success of a coating that the surface is not only clean, but also uniform and free of surface defects, otherwise these will simply be reflected through the coating. For example, most defects, voids or uneven areas previously damaged by attack or produced as the result of surface preparatory work, could all allow the entry of aggressive agents behind the coating.

The treatment and closure of these surface defects is therefore necessary to ensure complete, uniform and defect-free application of a protective coating system. This type of product is also commonly known as a surface levelling mortar and a surface sealing mortar. A surface smoothing coat should be ideally matched to the substrate condition, together with its subsequent exposure and overcoating requirements. Sikagard®-720 EpoCem® is a thin layer levelling mortar based on a combination of epoxy resin and cement binders. As such its properties provide the best advantages of both systems. Sikagard®-720 EpoCem® needs no additional curing and enables rapid overcoating with vapour-tight, abrasion and/or chemically resistant coatings. It is therefore extremely suitable for use in Zones 1 and Zone 2 if or where deemed necessary of the external surfaces, together with all of the chemically exposed internal surface areas.

LEVELLING OF EXTERNAL ZONE 2 AND ZONE 3 SURFACES

Due to the very large external surface areas involved in Zone 2 and 3, it is difficult to apply a levelling mortar in these areas. In these zones to maintain the durability despite the lack of resurfacing work, a combination of hydrophobic primer and protective coatings can be used. The combined system is included in several different approved protection systems for the protection of concrete façade surfaces in Germany and France (referenced as GS2 per DIN V 18026 and included in the recommendations of NF P 95-103-14).

If resurfacing is nevertheless required, the polymer modified cement-based surface levelling mortar Sika MonoTop®-723 N is then the most cost effective and appropriate product for this purpose on external surfaces of chimneys and cooling towers.

LEVELLING OF EXTERNAL ZONE 1 AND THE INTERNAL SURFACES

LEVELLING OF EXTERNAL ZONE 1 AND THE INTERNAL SURFACES

This surface requires chemical protection. Therefore, adequate surface preparation shall be performed prior to apply the protective coatings. Sikagard®-720 EpoCem® is the best product for this purpose. Sikagard®-720 EpoCem® is a thin layer levelling mortar based on a combination of epoxy resin and cement binders. As such its properties provide the best advantages of both systems. Sikagard®-720 EpoCem® needs no additional curing and enables rapid overcoating with vapour-tight, abrasion and/or chemically resistant coatings. It is therefore extremely suitable for use in Zones 1 and Zone 2 if or where deemed necessary of the external surfaces, together with all of the chemically exposed internal surface areas.

PROTECTIVE SURFACE COATINGS

PROTECTION OF EXTERNAL SURFACES FOR EXPOSURE IN ZONE 1

In Zone 1 the concrete surface must always be levelled and sealed to ensure that a uniform and defect-free, protective coating system can be applied. Sikagard®-720 EpoCem® with its unique properties is ideally suited for this purpose in Zone 1 areas – as outlined on page 20.

These are the most severely exposed areas of the external surfaces, so the coating system must also be extremely resistant to the aggressive influences to ensure its durability in most situations. Sikal® fosset®-2406 is used as the priming and intermediate coating on the sealed and levelled concrete surface. This is a low-solvent, high-build epoxy combination. It is followed by two coats of SikalCor® EG-5 a colored, chemically resistant and UV color stable, polyurethane top coat.

SikalCor® EG-5 is available in all official aircraft warning colors worldwide, which are often required for safety reasons at the top of chimneys and cooling towers.

On surfaces that are potentially subject to future movement and cracking: Sikafloor®-390 is used as the coating system. It is a flexible high-build epoxy-based material with medium crack-bridging abilities, then Sikagard®-383 is applied as the colored (aircraft warning colors available) and elastic, crack-bridging polyurethane top coat that also has High UV stability and excellent chemical resistance.

All mentioned Sikal® materials comply with the requirements of EN 1504-2.

IN ZONE 1 THE CONCRETE SURFACE MUST ALWAYS BE LEVELLED AND SEALED.
PROTECTIVE IMPREGNATIONS AND SURFACE COATTINGS

PROTECTION OF EXTERNAL SURFACES FOR EXPOSURE IN ZONES 2 AND 3: First a hydrophobic impregnation is applied to produce a water-repellent surface. The pores and capillary network are not completely filled, but only lined with the hydrophobic material. This works by reducing the surface tension of liquid water, preventing its passage through the pores, but still allowing each way water vapor diffusion.

Sika produces a full range of hydrophobic impregnations and systems for the protection of the exposed larger areas of Zones 2 and 3 according to EN 1504-2. These include:

- The Sikagard® range of silicone, silane and siloxane based hydrophobic impregnations, which are used to penetrate deeply and provide a liquid water-repellent surface, but still allowing water vapor diffusion.
- Sikagard®-680 S, an acrylic resin-based surface coating, which blocks surface pores against the entry of water and carbon dioxide, thus effectively halting carbonation, whilst water vapor diffusion can continue. This product is also particularly useful and suitable for application in the difficult environmental conditions of high humidity and/or low temperatures.
- The Sikagard®-520 range of waterproofing and anti-carbonation systems are also elastic and crack-bridging. They serve to accommodate thermal and dynamic movement in the structure, particularly where it is subject to wide temperature fluctuation.
- The combination of a Sikagard® hydrophobic impregnation (e.g. 2 x Sikagard®-700 S or 1 x Sikagard®-740 W) followed by Sikagard®-680 S anti-carbonation coating.

The combined system is frequently used for the larger lower areas of Zone 3 on chimney and cooling tower external surfaces. Where the steel reinforcement has good concrete cover, this combined system can be used without a prior levelling coat as the Sikagard® hydrophobic impregnations prevents water penetrating behind the Sikagard®-680 S coating through blowholes etc. and causing problems. This also conforms to the DSI classification of the German Federal Regulations for concrete protective coating systems and the French standard Repair and strengthening of concrete engineering structures – Treatment of cracks and protection of concrete – Specifications for the technique and materials used.

PROTECTION OF THE INTERNAL SURFACES OF COOLING TOWERS

As with Zone 1 (external surfaces) the repaired internal surfaces must always be levelled and sealed prior to application of the final protective coating system. The ideal material to achieve this is the unique Sikagard®-720 EpoCem® (please refer to page 20).

The protective coating system to be used internally is dependent on whether or not the tower has a modern Flue gas desulfurization equipment installed. The products to be used are actually the same, but with the FGDS system installed, the chemical exposure is much lower and so only a single base coat is required. Sikagard®-2406 is the ideal two-component, pigmented and chemically resistant epoxy resin based coatings. This product has a long proven history of use in cooling towers and is externally tested and controlled.

However, the top section of the tower is accessible to exposure from both diffusive reflection and direct solar radiation, which both attack polymer-based coatings. The degradation process is photocatalytically accelerated by the combination of the UV part of the radiation and components of the flue gas, especially any nitrous and nitrox material (NOx).

The system to be used in the upper zone consists of either one or two coats of Sika Icosit®-2406 followed by Sikgard®-363. This polyurethane based product combines UV and chemical resistance.

Whenever the temperature in the tower exceed 35°C (often the case for induced draft towers), a special epoxy resin Sika® Permacor®-3326 EG H that resist up to 65°C in wet condition shall be used.

The repaired internal surfaces must always be levelled and sealed prior to application of the final protective coating system.
REMEDIAL TREATMENT SOLUTIONS FOR CRACKS AND JOINTS

DUE TO THEIR SLENDER STRUCTURES AND HARSH ENVIRONMENTS, chimneys and cooling towers are frequently prone to cracking in the concrete. At the base of cooling towers, the containment basins can also often require the repair and sealing of leaking cracks as part of their overall refurbishment.

All concrete repair and protection works must therefore take account of the position and size of any cracks and joints in the concrete. This means investigating their nature and cause, then understanding the extent of any movement and its effect on the stability, durability and function of the structure.

Therefore, this is an important part of the condition survey and the identification of the nature and degree of the damage in these structures. Cracks in the concrete can obviously give aggressive gases and liquids direct access to the embedded steel reinforcement.

Then, the most suitable Sika system of sealing and bonding can be selected. Sika® Injection systems include both low and high pressure materials, designed for application with different types of equipment, according to the requirements. Sika produces different viscosities and grades of the synthetic resins in the Sika® Injection range. All products are solvent-free. Depending on products they can be used in both dry and damp environments, particularly suitable for fast, secure and chemically resistant bonding of new or replaced additional steel reinforcement.

NON-MOVING CRACKS

These are cracks that have been formed by initial shrinkage e.g. they need only to be fully exposed and repaired / filled with the appropriate Sika® repair mortar, or Sika® levelling mortar, as outlined for surface defects on page 20. The selected surface treatments can then be safely applied successfully over these cracks.

As outlined on page 22, fine surface cracks with a total movement of up to 0.3 mm can be safely repaired, then sealed and their movement accommodated by the elastic, crack-bridging coatings from the Sikagard® -500 Elastic range.

CRACKS TO BE TRANSFERRED TO A JOINT

Where the structural engineer has directed that an existing crack should be treated to function as a movement joint in the structure, it needs to be sealed at the surface to prevent the ingress of any further aggressive agents. It can be sealed with the Sikaflex® range of joint sealants, primarily based on one-component polyurethane and Sika® AT polymers designed for easy application, high movement capability and excellent durability.

Sika also produces special overbanding and crack-sealing jointing materials for this application such as the Sikadur®-Combiflex® System. This is a special combination of Sikadur® epoxy resin adhesive and Sika modified hypalon strip that is extremely elastic. It can accommodate different joint and crack widths, excessively wide joints or joints that are contaminated with failed sealants. It is also very chemically resistant and suitable for exposure to many aggressive chemicals, including those in exhaust gases. This means that the Sikadur®-Combiflex® system is particularly good for use in the important lower containment basin areas.

REPAIRMENT CONCRETE REPAIR AND PROTECTION OF CHIMNEYS AND COOLING TOWERS 24

BASEMENT WATERPROOFING WITH Sikaplan® SHEET MEMBRANES

Sikagard®-680 S protective coating.

STRUCTURAL REINFORCEMENT AND STRENGTHENING

ANCHORING OF ADDITIONAL OR REPLACEMENT STEEL REINFORCEMENT IN THE CONCRETE:

The selection of the appropriate size and configuration of such reinforcement and the locations where it is to be fixed or anchored, must always be determined by the structural engineer. The fixing points or anchorages into the concrete should then be designed, produced and installed in accordance with EN 1504 Part 6 and all of the relevant European Technical Approvals (ETA).

Sikadur® adhesives have extensive independent testing certificates, approvals and references on major power and infrastructure projects all over the world. Sika® Anchofix® cartridge-packed adhesive fixing system, includes epoxy and epoxy acrylate based anchoring adhesives.

Sika® Anchofix®-2 is ETA-approved for structural applications and it is particularly suitable for fast, secure and chemically resistant bonding of new or replacement additional steel reinforcement into the structural concrete of chimneys and cooling towers.

PRE-STRESSING (POST-TENSIONING) OF SIKA CARBODUR® PLATES:

The extensive expertise and experience that Sika has gained with these materials also led to the exciting development of pre-stressing systems and techniques for post-tensioning applications with the Sika Carboudur® plates. These include the Sika CarboStress® system. The innovative Sika CarboHeater allows the plate bonding systems to be installed on site at low temperatures or it can accelerate the adhesive’s curing for rapid installations, with only minimal downtime. With this innovation, the strengthening works can be carried out with only short overnight closures or during the winter which is not possible without heater.

EXTERNAL STRENGTHENING BY PLATE OR FABRIC BONDING:

Structural strengthening by bonding of external plates is carried out in accordance with the relevant national design codes and EN 1504-4. The exposed surfaces of the concrete to receive the externally bonded reinforcement should be thoroughly cleaned and prepared. Any weak, damaged or deteriorated concrete must be removed and repaired, to comply with EN 1504 Part 10 Section 7.2.4 and Section 8.

In 1980 Sika started working with modern composite materials, particularly glass, aramid and carbon fibres. These are now used extensively for structural strengthening works as Sikadur® epoxy adhesive bonded mortar, as Sika CarboDur® prefomed plates or as SikaWrap® fabric sheets which are built up and moulded on site with Sikadur® epoxy resins.

Structural strengthening by bonding of external plates from powered access cradles.
ADDITIONAL SIKA SOLUTIONS
STEEL COATINGS FOR CORROSION PROTECTION

DURING THE CLOSURE AND OUTAGE of concrete chimneys and cooling towers for substantial refurbishment works, the opportunity is usually taken to renew or refurbish the associated structural steelwork and other ancillary steel equipment.

These steel surfaces are exposed to the same aggressive conditions from the exhaust gases and condensates, UV light exposure and weathering. This means that the steel surface exposure is similar to the concrete in the zone classification of the external areas and also internally within cooling towers, dependent on its position. This exposure can be classified at least according to ISO 12944 part 2 “Heavy Industrial”, which therefore also requires durable and effective corrosion protection.

DURABLE CORROSION PROTECTION

For this durable level of corrosion protection to be achieved in this aggressive environment, the steel surfaces must be protected from UV light exposure and weathering. This therefore also requires durable and effective corrosion protection.

Sika produces all of the necessary products to meet the stringent protection and durability requirements in these situations, with all relevant systems approvals and certification. These systems include active primers and then the intermediate and top coats according to the specific structure requirements, designed for use in shop and/or site applications.

The SikaCor® coatings range also includes materials for direct application to exposed galvanized steel and aluminium surfaces.

- For functional equipment and its associated structural support steel surfaces with chemical contact and exposure: The Sika Positiv® System is specifically designed for these extreme conditions. It is based on epoxy resin combinations.
- For structural steel and functional equipment surfaces with normal industrial area atmospheric levels of chemical exposure: The Sika® Positiv® System is particularly suitable for this due to its high-build properties and it is also based on epoxy resin combinations.
- For the steel surfaces with the highest potential stress from both chemical and UV exposure in service, together with visual appearance requirements: The SikaCor® EG System, including SikaCor® EG-5 polyurethane resin-based top coating, is used extensively for this due to its high-build properties and it is also based on epoxy resin combinations.
- For the steel surfaces with the highest potential stress from both chemical and UV exposure in service, together with visual appearance requirements: The SikaCor® EG System, including SikaCor® EG-5 polyurethane resin-based top coating, is used extensively for this due to its high-build properties and it is also based on epoxy resin combinations.
- Galvanized steel ladders protected with direct application SikaCor® coatings.

CONSTRUCTION AND PROTECTION OF NEW STRUCTURES

Achieving durable construction with surface protection from the start, following the old saying that “prevention is better than cure”, is certainly advisable with chimney and cooling tower constructions. Both of these types of structure are now normally built by slip-forming or similar climbing form methods. These all involve working to achieve almost continuous steel fixing, concrete pouring and then the early release and movement of the formwork.

The concrete is almost always pumped into the slip-forms and therefore it is required to be extremely fluid for pumping and placement around the dense reinforcement. Yet it must also be suitable to achieve the high early strengths required to allow the formwork to be safely moved as soon as possible.

HIGH PERFORMANCE CONCRETE

This is exactly what can be achieved with Sika® ViscoCrete® superplastizier technology. In combination with Sika-Rapid® technology, the necessary concrete consistency and performance can now be produced in all of the different climatic conditions around the world. This allows high quality construction in all geographic locations, plus the construction work can continue uninterrupted through-out the year, without costly delays in the winter. To achieve a dense, closed concrete surface for maximum durability, it must be cured correctly and efficiently. However, this is particularly difficult on slip-formed surfaces which can easily dry out too quickly. This can result in lower surface strengths, increased porosity and reduced quality. The risk of surface shrinkage and cracking will be increased.

CONCRETE PROTECTION

Sika pioneered an innovative method of overcoming these difficulties, by applying a protective coating to the concrete surfaces immediately after striking. This is not by using so-called “concrete curing agents”, but by the early application of the first or the primary coats of the special Sika protective coating systems. This is achieved with the physically hardening, acrylic-based Sikagard®-680 S for External Zones 2 and 3. For the external Zone 1 and as well as the inside of the cooling towers Sikagard®-720 EpoCem®, cement modified epoxy, can be used as resurfacings and early protections.

THE OLD SAYING THAT “PREVENTION IS BETTER THAN CURE”, IS CERTAINLY ADVISABLE WITH CHIMNEY AND COOLING TOWER CONSTRUCTIONS.

Refurbishment
Concrete repair and protection of chimneys and cooling towers

SikaCor®-2406 epoxy coating applied inside a cooling tower.

Right: Slip-forming a new concrete chimney base structure with Sika® ViscoCrete® technology.

Use Sika Icosit®-2406 solvented, two-component, pigmented protective coating system from the start. This is a UV and chemically resistant, pigmented two-component epoxy, water-repellent coating system. After the external Zone 1 and as well as the inside of the cooling towers Sikagard®-720 EpoCem®, cement modified epoxy, can be used as resurfacings and early protections.

Use Sikagard®-680 S the single-component acrylic-based, crack-bridging properties of the products, plus the penetrative capabilities of these special Sika® systems. This procedure has now become well known as “direct curing”. This early-age coatings application also allows the concrete to achieve its maximum strengths and prevents any initial carbonation.

EXTERNAL ZONES 2 AND 3 – PROTECTIVE COATING SYSTEM FROM THE START:

Use Sikagard®-680 S the single-component acrylic-based, crack-bridging properties of the products, plus the penetrative capabilities of these special Sika® systems. This procedure has now become well known as “direct curing”.

CONCRETE REPAIR AND PROTECTION OF CHIMNEYS AND COOLING TOWERS

Use Sikagard®-363, as the UV and chemically resistant top coat, which should be applied in the solar exposed upper section.

Sikagard®-680 S 5 pigmented, two-component, pigmented epoxy resin based coating. It is followed by two coats of Sikacem®-5, colored, chemically resistant and UV color stable. Polyurethane top coat.

COATING SYSTEM FROM THE START:

Use Sikagard®-720 EpoCem®, cement modified epoxy, can be used as resurfacings and early protections. For the external Zone 1 and as well as the inside of the cooling towers Sikagard®-720 EpoCem®, cement modified epoxy, can be used as resurfacings and early protections.

INTERNAL SURFACES – PROTECTIVE COATING SYSTEM FROM THE START:

Use Sikagard®-363, as the UV and chemically resistant top coat, which should be applied in the solar exposed upper section.

CONCRETE REPAIR AND PROTECTION OF CHIMNEYS AND COOLING TOWERS

A secret of success with this concept is in the high moisture tolerance and displacement capabilities of the products, plus the penetrative capabilities of these special Sika® systems. This procedure has now become well known as “direct curing”.

CONCRETE REPAIR AND PROTECTION OF CHIMNEYS AND COOLING TOWERS

This early-age coatings application also allows the concrete to achieve its maximum strengths and prevents any initial carbonation.

EXTERNAL ZONE 1 – PROTECTIVE COATING SYSTEM FROM THE START:

Use Sikagard®-363, as the UV and chemically resistant top coat, which should be applied in the solar exposed upper section.

INTERNAL SURFACES – PROTECTIVE COATING SYSTEM FROM THE START:

Use Sikagard®-4206 solvented, two-component, pigmented epoxy resin based coating. It is followed by two coats of Sikacem®-5, colored, chemically resistant and UV color stable. Polyurethane top coat.

EXTERNAL ZONE 2 AND 3 – PROTECTIVE COATING SYSTEM FROM THE START:

Use Sikagard®-680 S the single-component acrylic-based, pigmented anti-carbonation and water-repellent coating system. Alternatively use an external coating system with crack-bridging properties using coatings from the Sikgard®-500 Elastic range.
CASE STUDIES OF REINFORCED COOLING TOWERS

EKO, GERMANY

THE PROJECT
EKO STEEL WORKS, EISENHUTTENSTADT, GERMANY

Owned by Arcelor, the world’s largest steel producer, the plant had 4 natural draught cooling towers built in the early 1960’s. Each tower was 55 m high with an average diameter of 33 m and a total combined internal and external surface area of more than 10,000 m².

THE PROBLEM
During the 1990’s three of the towers became unsafe and had to be demolished, they were then replaced with costly forced-draught coolers. The fourth was also under threat in 2003 due to the extent of continuing concrete damage that had occurred. The repair and strengthening techniques were considered to be impractical and extremely costly, therefore its demolition was also proposed. However, one of the leading German Consulting Engineers, Leonhardt Andrea and Partner (LAP), proposed an innovative solution.

GROOTVEI, SOUTH AFRICA

THE PROJECT
GROOTVEI POWER STATION, BALFOUR, SOUTH AFRICA

This coal fired power station has six 200MW power producing units that were first commissioned in 1969. However, due to the increased cost of coal and transport, three were mothballed in 1990. Then in 2005, it was decided to reopen these and also to refurbish the whole plant to meet increased power demands and the different economic situation. Full running of the plant is planned for December 2009.

THE PROBLEM
Due to the combination of all the usual reasons including carbonation and aggressive exhaust gas attack to the concrete, the cooling towers, support structures and also the main chimneys in the plant had suffered severe deterioration during 30 years of exposure. There were also a substantial number of structural cracks in the cooling towers resulting from a combination of loading and ground settlement/movement. These cracks allow water ingress in the concrete structures affecting the durability of the post-tensioned steel.

THE SIKA SOLUTIONS
The structural cracks in the concrete were sealed at the surface and then filled and re-bonded with the Sikadur structural epoxy injection system and the damaged concrete was patch repaired with the Sika Monotop hand applied system with Sikacure®-214 for poured repairs. Sikalox® Armatec-110 EpoCem® was used as the steel reinforcement primer onto the prepared steel, where concrete spalling over corroding reinforcement had occurred to provide long term corrosion protection. The external surfaces of the repaired cooling towers were protected with a Sikagard® hydrophobic impregnation and the external chimney surfaces were protected with Sikagard®-550W coatings due to the more aggressive exposure and possible risk of future cracking from the adverse thermal gradients that can occur in service.

TUROW, POLAND

THE PROJECT
TUROW POWER STATION, BOGATYNA, POLAND.

The Turow Power Station in Bogatyna, Poland, is the main power supplier in this area at the borders of Poland, Germany and the Czech Republic. In the past the area was known as the ‘Black Triangle’ due to it’s heavily polluted environment with up to 50 power plants within a 50 km radius. The environmentally aware residents of the area now have the aim to be known as the ‘Green Triangle’.

THE PROBLEM
In 1988 one of the nine cooling towers in this power station collapsed due to the advanced deterioration of the reinforced concrete structure caused by the aggressive exposure. This triggered a major condition survey of all such structures in Poland to be ordered by the government – several were found to require immediate repair due to similar concrete damage and reinforcement corrosion.

THE SIKA SOLUTIONS
The Turow No. 2 Cooling Tower was one that required immediate repair. Due to the authority’s lack of experience in the repair of these structures, a well known specialist contractor in this field from Germany was appointed to carry out the work and develop the skills of local contractors for similar works in the future.

This specialist contractor used Sika as their repair materials supplier because Sika had worked successfully with them on earlier projects in Germany and elsewhere to develop and adapt products specifically for the special requirements on these structures.
CASE STUDIES

KALININ, RUSSIA

THE PROJECT
KALININ NUCLEAR POWER PLANT, TVER, RUSSIA

The Kalinin Nuclear Power Plant is located in Tver’ region near the town of Udomlya (~200 km away from Moscow). The plant was commissioned in 1985. Owner and operator is the State Company Rosenergoatom. Kalinin Nuclear Power Station supplies the majority of electricity in the Tver region and additionally serves Moscow, Saint Petersburg and Vladimir. The plant has four 150 meter tall cooling towers. In accordance with the latest regulations in nuclear sector, these structures were built to last at least for more than 50 years. Two newly built cooling towers were protected with Sika coating systems in 2009/10.

REQUIREMENTS FOR THE EXTENSION OF SERVICE LIFE OF EXISTING TOWERS
- Outside waterproofing of substructure of supporting columns
- Excellent corrosion protection of concrete shell (inside and outside)
- Corrosion protection of steel structures (pipes, access boards etc.)

THE SIKA SOLUTIONS

The high quality concrete admixtures Sika® ViscoCrete®-20 HE / 20 Gold were used to achieve the high concrete quality requirements. Some local concrete repair was needed and Sika MonoTop®-610 corrosion protection and Sika MonoTop®-612 patch repair mortar were used. Sika® Icosit®-2406 System was used as protection coating system of the inner concrete shell and precast concrete installed in the tower. The external surfaces of these new Cooling Towers were protected with 2 coats of Sikagard®-700 S hydrophobic impregnation followed by 2 coats of acrylic based coating Sikagard®-680 S BetonColor.

SikaCor® Zinc R and SikaCor® SW-500 System was applied as corrosion protection system for the steel elements inside the tower. Outside waterproofing of substructure of supporting columns was provided with 1-component and easy to apply bituminous mastic Igolflex® N and PVC Sika® Waterbar were placed in the construction and expansion joints.

LENINGRAD, RUSSIA

THE PROJECT
LENGERADSKAYA NUCLEAR POWER PLANT-2, LENINGRAD, RUSSIA

The Leningradskaya Nuclear Power Station is located near the Sosnoviy Bor town Gulf of Finland. Owner and operator of the plant is the State Company Rosenergoatom. This is a newly built plant, consists of four nuclear reactors and three huge natural draught cooling tower. By the end of 2013 two of cooling towers were built, one was in design process. One of newly built cooling towers was completely protected inside and outside with Sika coating systems. Steel pipes inside cooling tower were protected with corrosion protection systems. Sika material was also used for the waterproofing of the basement, protective coatings for basin and precast concrete inside cooling tower.

GOAL OF PROTECTION SYSTEM
- Protective coatings for internal and exterior shells to extend the durability and makes the service maintaining easy and cost effective
- Durable basement waterproofing
- Corrosion protection of steel structures
- Protection of precast concrete

THE SIKA SOLUTIONS

The combined system of hydrophobic impregnation Sikagard®-700 S and acrylic-based protective coating Sikagard®-680 S BetonColor was used for the exterior concrete shell. For the inner concrete shell protection, epoxy coating system Sika® Icosit®-2406 was used. In the zone accessible by the UV radiation, a final coat of PU coating Sikagard®-363 to provide the UV protection to the epoxy coating was applied.

The waterproofing of the basin was provided by 1-part bituminous mastic Igolflex® N and PVC Sika® Waterbar were placed in the construction and expansion joints.

Corrosion protective system for steel pipes and access boards provided by epoxy-based SikaCor® Zinc R as a primer and SikaCor® SW-500.

Local concrete repair with Sika MonoTop® System.

Precast concrete inside cooling tower was protected with Sika® Icosit®-2406 System.
WHO WE ARE

Sika AG, Switzerland, is a globally active specialty chemicals company. Sika supplies the building and construction industry as well as manufacturing industries (automotive, bus, truck, rail, solar and wind power plants, façades). Sika is a leader in processing materials used in sealing, bonding, damping, reinforcing and protecting loadbearing structures. Sika’s product lines feature high quality concrete admixtures, specialty mortars, sealants and adhesives, damping and reinforcing materials, structural strengthening systems, industrial flooring as well as roofing and waterproofing systems.

Our most current General Sales Conditions shall apply. Please consult the Data Sheet prior to any use and processing.

SIKA SERVICES AG
Tüffenwies 16
CH-8048 Zürich
Switzerland

Contact
Phone +41 58 436 40 40
Fax +41 58 436 41 50
www.sika.com